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Abstract

Diagonal preconditioners for implicit-unsteady and steady discretizations of the shallow water equations at low- and
high-Rossby and drag-number limits are analyzed. For each case, sub and supercritical flow conditions are also considered.
Based on the analysis, a preconditioner is derived for use with a multigrid cycle that performs as well as possible under all
conditions. In addition, a streamwise-upwind Petrov–Galerkin discretization of the system is presented that is derived from
the preconditioned system. Using this discretization, it is demonstrated that for most conditions, the preconditioner gives
rapid convergence that is independent of the grid resolution and the flow parameters. Practical tests including an equatorial
Rossby soliton and tide propagation over variable bathymetry are simulated to demonstrate the performance of this
approach.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The shallow water equations are the mathematical model for a wide range of fluid flow problems. For
hydraulic studies, they can be used to assess the extent of flooding from failed dams or swollen rivers. For
coastal ocean applications, the shallow water equations can be employed to model seiches, tidal flows, storm
surge, pollutant dispersal, and accurate residence times in estuarine pollution problems. In geophysical scale
problems where the Earth’s rotation becomes important, they can be used to model the barotropic motion of
Kelvin and Rossby waves in the ocean and atmosphere.
0021-9991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
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Difficulties in integrating the shallow water equations primarily stem from the disparity between convective
velocities which typically are of the order 0.1–1 m/s and the gravity wave speed which can exceed 200 m/s off
the continental shelf. The ratio of these values forms the relevant Froude number ðFr ¼ u=

ffiffiffiffiffi
gh
p

), where u is the
convective speed, g the gravitational acceleration, and h the depth of the water column. Values for this param-
eter can be greater than unity in dam break problems but are typically much smaller, reaching 10�5 in deep
ocean flows where the associated problem stiffness hinders explicit time-marching techniques.

To filter the gravity waves and thus relax the time step constraint, early work in large-scale geophysical
applications used a rigid lid approximation [1]. This is a reasonable approach for meso- and basin-scale oce-
anic problems and atmospheric-scale problems where relatively little energy is contained in the gravity waves
and tidal motions may be ignored. The rigid lid approach was later shown to have a detrimental effect on the
energy transport by altering the group velocity of Rossby waves [2] and has subsequently seen reduced usage.

Presently, a common approach is to use a semi-implicit scheme where the linear terms responsible for the
gravity wave’s existence are treated implicitly [3,4]. These schemes allow a larger time step to be employed as
the stability no longer depends on the celerity of the gravity wave. They are commonly formulated using
Crank–Nicholson, backwards Euler, or h-method approaches and many implementations neglect an impor-
tant correction term, reducing them to first-order accuracy [5]. When Eulerian methods are used, these
semi-implicit schemes are limited by a Courant–Friedrichs–Lewy (CFL) condition based on the local advec-
tion speed. Traditionally, this has not been a severe restriction, but recent advances in computer power in com-
bination with unstructured grid methods in coastal ocean modeling have made it possible to use a fine
resolution ( �10 m) near the coast. These small cells necessitate small time steps in semi-implicit based schemes
and can require O(10,000) steps to integrate a single period of the semi-diurnal M2 tide. Recent efforts have
focused on relaxing this CFL requirement using predictor–corrector algorithms [6] as well as semi-Lagrangian
schemes [3,7] that discretize substantive time derivatives along characteristics.

In applications of the shallow water equations to hydraulic flow problems such as dam failures, the rela-
tively shallow depths and large fluid velocities can lead to supercritical ðFr > 1Þ flows. Most of the scientific
effort associated with these problems focuses on resolving moving flow discontinuities and simulating wet-
ting/drying processes associated with flooding events. For these applications, explicit schemes are typically
used because the higher Froude numbers and shorter problem time scales render them feasible (e.g. [8,9]).
However in very shallow water, the stress exerted by the bed on the water column can lead to a significant
reduction in allowable time step. This has led to the implementation of point-implicit approaches for the bot-
tom friction [10].

By employing fully-implicit schemes, the CFL requirement can be completely relaxed. The system is uncon-
ditionally stable and the time step selection is based solely on desired solution accuracy. For coupled nonlinear
hyperbolic systems of equations, fully implicit schemes require iterative solutions to advance the flow solutions
each step. This problem is analogous to implicit numerical simulations of compressible flow and techniques
derived for such simulations can often be applied to the shallow water equations as well. In this work, we
develop a ‘‘dual time-stepping” approach [11–14] for solving the shallow water equations. This method is fully
implicit, matrix free, and allows any order of temporal accuracy, but it requires the iterative solution of a set of
nonlinear equations at each time step. To be cost effective, convergence must be rapid. For this work, we use
an explicit iteration and local time stepping within a multigrid cycle [15–17]. We formulate a preconditioner
for this iteration that allows fast solutions to be obtained over a wide range of flow regimes. These include
large-scale geophysical flows in near geostrophic balance, tidally-driven coastal flows at low Froude, and fric-
tion-dominated flows in the shallows of estuarine intertidal zones.
2. Governing equations

Our starting point is the shallow water equations in conservative form
ow
ot
þ ofx

ox
þ ofy

oy
¼ s ð1Þ
with the flow vector
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w ¼
h

hu

hv

264
375 ð2Þ
where h is the fluid depth, and u and v are the x- and y-direction velocities respectively. The x- and y-direction
flux vectors, fx and fy , are given by
fx ¼
hu

hu2 þ gðh2 � b2Þ=2

hvu

264
375 ð3Þ

fy ¼
hv

huv

hv2 þ gðh2 � b2Þ=2

264
375 ð4Þ
where b is a variable bathymetry. s is the source term
s ¼
0

fhvþ s0bx þ gðh� bÞbx

�fhuþ s0by þ gðh� bÞby

264
375 ð5Þ
which includes the effect of the Earth’s rotation through the Coriolis parameter, f, the stress exerted by bottom
friction through s0bx and s0by , and forcing from the bathymetry gradient ðbx; byÞ. The gravity terms are written in
the above form such that the solution h ¼ b is guaranteed not to drive any spurious currents. The Coriolis
parameter, f, is given by f ¼ 2X sinð/Þ where X is the angular velocity of the Earth and / is the latitude.
The bottom friction (s0bx and s0by) can be included using a variety of formulations. Here we use a quadratic
stress representation based on a constant drag coefficient, Cd.
ðs0bx; s
0
byÞ ¼ �Cd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
ðu; vÞ ð6Þ
The bottom friction is denoted with primes to indicate that we have used specific quantities with the fluid
density divided out.

3. Dual-time-stepping approach

The time derivative term is discretized with a one-step backwards difference scheme. Higher-order implicit
schemes can also be used, but the one-step scheme simplifies the analysis. This results in an implicit set of
equations that must be inverted at each time step. A dual-time-stepping approach is used to perform the inver-
sion. In this method, an explicit advancement in pseudo-time is performed in order to solve the implicit equa-
tions. The form of the iteration is as follows:
P�1 ow
ot�
þ w� wn�1

Dt
þ ofx

ox
þ ofy

oy
� s ¼ 0 ð7Þ
where t� is the pseudo-time variable and Dt is the physical time step. Because the one-step implicit scheme is
A-stable [18], Dt is not constrained by stability criteria and can be set solely based on the desired accuracy of
the simulation. The variable wn�1 is the solution from the previous time step. All other variables and fluxes are
evaluated using wðt�Þ. When this iteration reaches a steady state in pseudo time, the implicit problem is solved
and the solution has been advanced from wn�1 to wn. The matrix P is a preconditioning matrix designed to
accelerate convergence in pseudo-time. We assume a simple form for P in which the u and v momentum equa-
tions are treated uniformly. P can thus be written as
P�1 ¼
p�1 0 0

0 1 0

0 0 1

264
375 ð8Þ
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The goal of this work is to find an expression for p that enables rapid convergence for a wide range of flow
conditions.

4. Spatially discrete system

To analyze the above problem and determine an optimal preconditioning matrix, we first linearize the equa-
tions about a uniform flow state and bathymetry given by u ¼ u0, v ¼ 0, h ¼ h0. In this case, the equations
become
P�1 ow
ot�
þ A

ow
ox
þ B

ow
oy
¼ Sw ð9Þ
where A and B are the Jacobian matrices given by
A ¼
0 1 0

�u2
0 þ gh0 2u0 0

0 0 u0

264
375 ð10Þ

B ¼
0 0 1

0 0 u0

gh0 0 0

264
375 ð11Þ
and Sw is the linearization of the source terms with S given by
S ¼
�Dt�1 0 0

2Cdu2
0=h0 �Dt�1 � 2Cdu0=h0 f

0 �f �Dt�1 � Cdu0=h0

264
375 ð12Þ
where the backwards time discretization has been included in the source terms. Constant terms in the linear-
ization and the backwards difference time advancement scheme are not included because these do not affect
the convergence rate.

System analysis is ameliorated by multiplying by P, effectively multiplying the continuity equation by the
preconditioning parameter p. We will denote the matrices PA and PB as eA and eB. The above equations are
discretized in space using a characteristic upwind scheme based on the preconditioned system. In this case, the
x-discretization is as follows
eA ow
ox
¼ eA wjþ1;k � wj�1;k

2Dx
� jeAjwjþ1;k � 2wj;k þ wj�1;k

2Dx
ð13Þ
where j and k are the horizontal and vertical mesh indices respectively, and jeAj is the absolute value of the
matrix defined as V jKjV �1 where V and K are the eigenvector and eigenvalue matrix of eA. The y-direction dis-
cretization is analogous.

The eigenvalues of the matrix eA are given by
u0

u0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

0ð1� pÞ þ pgh0

p
u0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

0ð1� pÞ þ pgh0

p
264

375 ð14Þ
If we let p be unity, we obtain the classical wave propagation speeds for the one-dimensional shallow water
equations: u0, u0 þ

ffiffiffiffiffiffiffi
gh0

p
, and u0 �

ffiffiffiffiffiffiffi
gh0

p
. If the quantity under the square root becomes negative, the eigen-

values change from real to imaginary, indicating a change in the system of equations from hyperbolic to ellip-
tic. This causes a modification of the characteristics and required boundary conditions and is thus undesirable.
Using the constraint that the eigenvalues remain real gives an upper bound on p as
p <
Fr2

Fr2 � 1
ð15Þ
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where the Froude number is defined as u0=
ffiffiffiffiffiffiffi
gh0

p
. This upper bound must be satisfied only when Fr is greater

than one (supercritical flow). In the limit that Fr goes to infinity, p must be less than or equal to one. The lower
bound on p is zero, a condition derived from requiring the eigenvalues of the matrix eB, given by
0ffiffiffiffiffiffiffiffiffi
pgh0

p
�

ffiffiffiffiffiffiffiffiffi
pgh0

p
264

375 ð16Þ
to remain real.

5. Analysis

To analyze the above system, we Fourier transform in both the x- and y-directions. In this case the x-direc-
tion derivative becomes
eA ow
ox
¼
eA
Dx

i sinðkxDxÞ þ j
eAj
Dx
ð1� cosðkxDxÞÞ ð17Þ
where kx is the wavenumber in the x-direction. The y-direction becomes
eB ow
oy
¼
eB
Dy

i sinðkyDyÞ þ j
eBj
Dy
ð1� cosðkyDyÞÞ ð18Þ
and the problem is reduced to a set of ODE’s for each kx; ky wavenumber combination. The basic idea of the anal-
ysis is to find p to equilibrate the time scales of high wavenumber combinations. This ensures that the precondi-
tioner will provide good damping for high wavenumber errors and thus make it useful for a multigrid algorithm.

Three high wavenumber cases must be analyzed to ensure good damping. These are
ðkxDx; kyDyÞ ¼ ðp; 0Þ; ð0; pÞ, and ðp; pÞ. (high wavenumber in x, high wavenumber in y, and high wavenumber
in both). It is intractable to symbolically find the eigenvalues of these systems in the general case, so we
approach the problem by taking limits. These are: large and small physical time step and Coriolis and friction
dominated conditions, each for sub and supercritical flow.

5.1. Steady solutions

For the steady flow case, Dt�1, f and Cd are set to zero. The wavenumber case of ðkxDx; kyDyÞ ¼ ðp; 0Þ then
simplifies to
ow
ot�
þ jAj

Dx
w ¼ 0 ð19Þ
The wavenumber ðkxDx; kyDyÞ ¼ ð0; pÞ simplifies to
ow
ot�
þ jBj

Dy
w ¼ 0 ð20Þ
and for the bidirectional wavenumber case,
ow
ot�
þ jAj

Dy
þ jBj

Dy

� �
w ¼ 0 ð21Þ
We analyze the above three wavenumber cases separately for subcritical ðu0 <
ffiffiffiffiffiffiffi
gh0

p
Þ and supercritical

ðu0 >
ffiffiffiffiffiffiffi
gh0

p
Þ conditions.

In the subcritical case, the eigenvalues of the above three equations are given by
Fr

Fr þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr2ð1� pÞ þ p

q
�Fr þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr2ð1� pÞ þ p

q
26664

37775
0ffiffiffi
p
pffiffiffi

p
p

264
375

Fr þ ffiffiffi
p
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fr2ð1� pÞ þ p
q

þ
ffiffi
p
p þ

ffiffiffiffiffiffiffiffiffiffi
4Fr2þp
p

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr2ð1� pÞ þ p

q
�
ffiffi
p
p þ

ffiffiffiffiffiffiffiffiffiffi
4Fr2þp
p

2

26664
37775 ð22Þ
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where we have non-dimensionalized by the wave speed
ffiffiffiffiffiffiffi
gh0

p
and the grid size Dx. We also have made the

assumption that the mesh is isotropic, Dx ¼ Dy.
Examining the first set of eigenvalues, we see that if Fr goes to zero while p remains finite, the systems will

be infinitely stiff with eigenvalues ð0; ffiffiffi
p
p

;� ffiffiffi
p
p Þ. If the second two eigenvalues are to be of the same magnitude

as the first (Fr), we must have p � Fr2. Substituting the form p ¼ g2Fr2 and taking the limit as Fr goes to zero,
we obtain
Fr

1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
264

375 0

g

g

264
375 1þ gffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ g2
p

þ 1=2gþ 1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ g2

pffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2

p
þ 1=2g� 1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ g2

p
264

375
0B@

1CA ð23Þ
There is one eigenvalue that is zero, thus by definition the condition number of this system is infinite. The
zero eigenvalue arises because there is no coupling in the y-direction for an eigenmode that is high-wavenum-
ber only in y. This mode has physical significance and corresponds to a slip phenomena. If we equilibrate the
remaining eigenvalues, we find that the minimum condition number occurs when g2 ¼ 3. Thus in the limit of
low Fr, p should be 3Fr2.

In the supercritical case, the eigenvalues are similar, given by
Fr

Fr þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr2ð1� pÞ þ p

q
Fr �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fr2ð1� pÞ þ p

q
26664

37775
0ffiffiffi
p
pffiffiffi

p
p

264
375

Fr þ ffiffiffi
p
p

Fr þ 1=2
ffiffiffi
p
p þ 1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1� pÞFr2 þ 5p

q
Fr þ 1=2

ffiffiffi
p
p � 1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1� pÞFr2 þ 5p

q
26664

37775 ð24Þ
In the supercritical limit, p cannot exceed one. If we let p ¼ 1 and let Fr be large, the first and third set of
eigenvalues are all proportional to Fr. The second set of eigenvalues are all small compared to Fr. This occurs
because the flow variables are all being swept in the x-direction. The coupling in the y-direction is small
because the wave speed is small relative to the convective velocity. There is no need to precondition in this
limit because the problem becomes essentially one-dimensional with all variables propagating at the speed u0.

A general form for the preconditioner for both of these cases is then
p ¼ 3Fr2

3Fr2 þ 1
ð25Þ
To determine a time step for the pseudo-time iteration, we also need to know the maximum eigenvalue. If
we substitute the above form for p into the eigenvalues, we find that in the subcritical case the maximum
dimensionless eigenvalue approaches 4.1 Fr and in the supercritical case it approaches Fr. These are reason-
ably approximated by
kmax ¼ Fr 1þ 2þ
ffiffiffi
7
p
�

ffiffiffi
3
p

2
ð1� ffiffiffi

p
p Þ

 !
þ ffiffiffi

p
p ð26Þ
5.2. Unsteady simulations

The next problem is the limit of small CFL, u0Dt=Dx. There is no need to study the large CFL limit because
it is essentially the steady problem studied above. To analyze the small CFL limit, u0; f , and Cd are set to zero.
Using our previous non-dimensionalization, there is only one remaining parameter,

ffiffiffiffiffiffiffi
gh0

p
Dt=Dx. A small value

for this ratio implies that the time step is small relative to the time required for the gravity wave to propagate
one grid cell. In this case, the equations are dominated by the Dt�1 term and the system is basically diagonal.
Thus, p ¼ 1 is appropriate.

The more interesting problem is the subcritical case in which the CFL number is small, but
ffiffiffiffiffiffiffi
gh0

p
Dt=Dx is

large i.e. the gravity waves propagate through many grid cells in one time step. For this case, the eigenvalues of
the three different wavenumber combinations are
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Dt�1ffiffiffi
p
p þ pDt�1ffiffiffi

p
p þ Dt�1

264
375

ffiffiffi
p
p þ Dt�1ffiffiffi

p
p þ pDt�1

Dt�1

264
375 2

ffiffiffi
p
p þ pDt�1ffiffiffi
p
p þ Dt�1ffiffiffi

p
p þ Dt�1

264
375 ð27Þ
where we have again non-dimensionalized using
ffiffiffiffiffiffiffi
gh0

p
and Dx. In the limit of Dt�1 � 1 (large time step relative

to gravity wave-based CFL), the problem will be badly conditioned unless p � Dt�2. Substituting p ¼ g2Dt�2

and taking the limit that Dt�1, we find that the minimum condition number occurs when g ¼ 1.
A form for the preconditioner that is valid for the small CFL limit is
p ¼ Dt�2

Dt�2 þ 1
ð28Þ
Using this form, p is equal to Dt�2 when Dt�1 is small and 1 when it is large (relative to
ffiffiffiffiffiffiffi
gh0

p
=Dx). The

maximum eigenvalue occurs when Dt�1 is small and has a value of 2Dt�1. kmax asymptotes to Dt�1 as Dt�1

increases. kmax in both cases is bounded by Dt�1 þ ffiffiffi
p
p

.

5.3. Friction-dominated flow

The parameter governing the importance of friction is the nondimensional surface drag number
a ¼ CdDx=h0. This parameter is normally denoted r, however, for clarity in Eq. (29) through (31) we use a.
When a is large, damping at the grid scale associated with friction dominates the advective terms. To see this,
we compare the source matrix S (Eq. (12)) to the matrix A. Any entry proportional to u0 in A has a corre-
sponding entry proportional to Cdu0=h0 in S. Assuming a is large, we can then neglect the terms proportional
to u0 in the A matrix.

Assuming a is large, for the subcritical case, the eigenvalues of the three wavenumber cases become
ffiffiffi
p
p

aFrffiffiffi
p
p þ 2aFr

264
375 2aFrffiffiffi

p
pffiffiffi

p
p þ aFr

264
375

ffiffiffi
p
p þ 2aFrffiffiffi

p
p þ aFr

2
ffiffiffi
p
p

264
375 ð29Þ
To equilibrate the damping rates of all eigenvalues as much as possible, p must take the form a2Fr2 in this
limit.

In the supercritical limit, if we let a approach infinity while p and Fr remain bounded, the eigenvalues are
aFr

2aFr

pFr

264
375 2aFr

aFrffiffiffi
p
p

264
375 aFrffiffiffi

p
p þ pFr

2aFr

264
375 ð30Þ
In this case, there is no choice of p that will equilibrate the eigenvalues. In the limit of large Fr, p is bounded
by 1. If a is large, then aFr will be much larger than Fr and the system will be poorly conditioned. A choice of p

that gives the correct scaling in the subcritical limit and does not exceed the required bounds on p in the super-
critical limit is
p ¼ a2Fr2

a2Fr2 maxð0; ðFr2 � 1Þ=Fr2Þ þ 1
ð31Þ
With this choice of p, the maximum eigenvalue in both the sub- and supercritical friction-dominated cases is
bounded by

ffiffiffi
p
p þ 2aFr.

5.4. Coriolis-dominated conditions

In this case, the flow dynamics are dominated by the Coriolis terms and we set u0;Dt�1, and Cd to 0. This
corresponds to the limit that the grid scale Rossby number, u0=ðf DxÞ is small. There is only one relevant
parameter in this case which is

ffiffiffiffiffi
gh
p

=ðf DxÞ, the ratio of the Rossby deformation radius to the local grid scale.
In the subcritical case, the eigenvalues are lengthy and are not reproduced here. Upon examination, we find
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that unless p scales as f 2, the time scales associated with the momentum equations will be much different than
for the continuity equation. Following the same procedure, we introduce p ¼ g2f 2, with the result that all
eigenvalues scale linearly with f. The minimum condition number occurs when g ¼ 1. kmax becomes 2f and
is independent of

ffiffiffiffiffi
gh
p

=ðf DxÞ.
In the supercritical case, p cannot exceed Fr2=ðFr2 � 1Þ. If we take the limit as f approaches infinity with Fr

and p bounded for each of the three wavenumber cases, two of the eigenvalues approach ±if. For the high
wavenumber in x case, the third eigenvalue scales as 1=f 2 so this mode will be badly conditioned. For the other
two cases, the third eigenvalue approaches a constant in the limit of large f. Thus, these two modes will also be
badly conditioned. The poor conditioning for this limit may not be detrimental because for most practical
supercritical flow problems, the associated length scales are considerably less than the Rossby radius of
deformation.

The following definition of p for Coriolis-dominated conditions gives the correct behavior for the subcrit-
ical case and ensures that p remains properly bounded for the supercritical case:
p ¼ f 2

f 2 maxð0; ðFr2 � 1Þ=Fr2Þ þ 1
ð32Þ
The maximum eigenvalue in both cases is bounded by f þ ffiffiffi
p
p

.

5.5. Combined result

If we combine all of the previous results and generalize to a flow moving in any direction, we arrive at the
following result for p and kmax which can be written in dimensional form as
p ¼ ð3þ a2ÞjjV jj2 þ D2
maxðDt�2 þ f 2Þ

ð3þ ra2ÞjjV jj2 þ D2
maxðDt�2 þ rf 2Þ þ gh

ð33Þ
with r defined as
r ¼ max
jjV jj2 � gh

jjV jj2
; 0

 !
ð34Þ
and D2
max defined as Dx2 þ Dy2. Here, a has been generalized to CdDmax=ðhÞ and kVk is the magnitude of the

flow velocity. With this choice of preconditioner, kmax is given by
kmax ¼ 1þ 2þ
ffiffiffi
7
p
�

ffiffiffi
3
p

2
max

ffiffiffi
1
p
� ffiffiffi

p
p

; 0
� � !

jjV jj
Dmin

þ Dt�1 þ f þ 2ajjV jj
Dmin

þ
ffiffiffiffiffiffiffiffi
pgh
p

Dmin

ð35Þ
where Dmin ¼ DxDy=Dmax. The use of Dmin gives a conservative estimate of kmax on anisotropic meshes.
6. SUPG stabilization

The numerical validation of the above preconditioner will be performed using a streamwise-upwind Petrov–
Galerkin (SUPG) finite element formulation [19] which uses the weak form
0 ¼
Xnel

e¼1

Z
Xe

/T ow
ot
� s

� �
� o/T

ox
fx �

o/T

oy
fy

� �
dXe

	
þ
Z

Xe

o/T

ox
Aþ o/T

oy
B
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þ
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C
/Tðfx; fyÞ �~n dC ð36Þ
where the sum is performed over all of the elements in the mesh, 1 to nel, and / is a vector test function. Xe is
the element area. C and~n are the boundary to the domain and the outward normal respectively. The matrix s
is a stabilization matrix that must be determined.
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The classical definition of s is
s ¼ Dmax

2
V bK�1V �1 ð37Þ
where V is the matrix of eigenvectors of jAj þ jBj and bK is defined as
bK ¼ jKj þ DmaxdiagðV �1SV Þ ð38Þ

where K is the eigenvalue matrix of jAj þ jBj. In the following we use an alternative definition that is easier to
analyze and more appropriate when the source terms strongly influence the dynamics:
~s ¼ Dmax

2
jeAj þ jeBj þ DmaxS
� ��1

ð39Þ
Using eA and eB in the definition of ~s gives the stabilization for the preconditioned system. Using this def-
inition, we can see that the stabilization matrix is closely tied to the preconditioning analysis of modes that are
high-wavenumber in both x and y. Often the form of ~s is simpler because the time scales of the preconditioned
system have been normalized to be the same magnitude. If the time scales were exactly equal, ~s would be diag-
onal because it could be written in the form V K�1V �1 where the eigenvalues and eigenvectors are derived from
the matrix inside the parenthesis in Eq. (39). If all the k’s of this matrix are the same, this becomes
VV �1=k ¼ I=k where I is the identity matrix.

For the steady and unsteady super and subcritical cases, as well as the subcritical friction- and Coriolis-
dominated cases, the preconditioner was able to reasonably equilibrate the eigenvalues of the system for
the case that is high-wavenumber in both x and y. Therefore for these cases, the eigenvalues are all similar
and as a reasonable estimate of these eigenvalues we can use kmax. ~s for these cases is then
~s ¼ k�1
maxI ð40Þ
The more difficult cases to analyze are supercritical friction- and Coriolis-dominated flow. For these con-
ditions, the eigenvalues of the bidirectional high-wave number system are found to scale differently. (For the
friction-dominated case, this can be seen by examining the third column of eigenvalues in Eq. (30).) For these
cases we use Eq. (39) directly. In the limit of large a Eq. (39) gives
~s ¼

1

2Fra 1þ ffiffipp Frð Þ 0 1ffiffi
p
p þpFr

0 1
Fra 0

�
ffiffi
p
p

2a 1þ ffiffipp Frð Þ 0 1ffiffi
p
p þpFr

26664
37775 ð41Þ
The matrix is not diagonal. The ~s matrix for the Coriolis-dominated case is also not diagonal. As supercrit-
ical friction- and Coriolis-dominated flows are less relevant to physical applications, the increased computa-
tional cost associated with employing a non-diagonal form for ~s is not worthwhile. Instead we use the
definition given by Eq. (40). Because this formulation uses kmax for all three eigenvalues, the stabilization terms
in the supercritical friction and Coriolis-dominated cases will be smaller than optimal.

The above stabilization matrix is for a system that is multiplied by P, but in actual implementations the inverse
of the preconditioning matrix would multiply the pseudo-time derivative term. To revert back to the original
form, we note that the stabilization term can be written (in 1D, but the same arguments hold in 2D) as
eA~seA ¼ PA~sPA: ð42Þ

To revert to the original system, we must multiply by P�1. This gives
A~sPA ð43Þ

and we can therefore define the stabilization matrix for the original system, s, as ~sP . The resulting final form
for s is then
s ¼ k�1
max

p 0 0

0 1 0

0 0 1

264
375 ð44Þ
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7. Numerical tests

To verify the optimality of the preconditioner, we examine convergence rates from a SUPG discretization
using the stabilization defined above. The details of the finite element code are described in Ref. [20]. It
employs a finite element discretization of Eq. (1) on triangular elements with a continuous, piecewise polyno-
mial basis. Although this scheme allows high-order polynomials, for simplicity we restrict the study to linear
polynomials. When using linear polynomials, the discretization is analogous to an unstructured, vertex-based,
finite-volume discretization. The discrete equations are solved using multigrid. The multigrid algorithm is a
full approximation and storage (FAS) algorithm [21], which means that it obtains the solution to the non-lin-
ear equations. The prolongation and restriction operators are the standard linear interpolation operators used
for unstructured, vertex-based, triangular meshes [21]. The relaxation scheme is given by Eq. (7) with a 5-stage
explicit Runge–Kutta scheme [22] to advance the solution in t�. Eqs. (33) and (35) for p and kmax are general-
ized for use on an unstructured mesh by taking kVk and h as the maximum value over the three vertices asso-
ciated with a given element. Dmax is the maximum length of the three element sides, Dmin is twice the triangle
area divided by Dmax. The time step in pseudotime Dt� is inversely proportional to kmax. A ‘‘local time-step-
ping” approach is used where both p and Dt� are calculated for each element.

7.1. Free-stream flow

The test problems in this section correspond to the analyses performed in Section 5. They are uniform flows
with speed u1 on a unit square. On the left and right side of the square, characteristic boundary conditions are
employed. The characteristic decomposition is based on the eA matrix whose eigenvalues are given in Eq. (10).
Periodic boundary conditions are used on the upper and lower boundaries. The problems are non-dimension-
alized such that the baseline depth and the gravitational acceleration are unity, therefore u1 corresponds to
the Froude number (Fr). The mesh is composed of 32 � 32 squares that are then subdivided into triangles.
Coarser meshes in the multigrid cycle have the same structure except the resolution is halved. Six levels of grids
are used such that the coarsest grid consists of only two triangles.

We examine the eight cases shown in Table 1. The first two cases examine steady solutions with no source
terms in the sub- and supercritical limit. The third and fourth cases correspond to unsteady simulations. In the
third, the implicit time step gives a convective CFL number equal to 1 and a wave-speed-based CFL of 100. In
the fourth case, the convective CFL is 0.1 and the wave-speed-based CFL is 10.0. It is not necessary to exam-
ine the supercritical case because this case corresponds to a steady supercritical flow when the time step is large
or a flow regime where an explicit simulation could be performed when the time step is small. The last four
cases test the friction- and Coriolis-dominated limit in sub- and supercritical conditions. For these cases, a
constant source term is added to the governing equations so that solution converges to uniform flow. To deter-
mine whether the preconditioner provides optimal convergence rates, the optimal value of the preconditioner,
popt, given by Eq. (33), is multiplied by five factors: 1/4, 1/2, 1, 2, and 4. For initial conditions we use a per-
turbation to free-stream that includes both high- and low-wavenumber components
Table 1
Cases studied

Case no. u1ffiffiffiffi
gh
p Dt

ffiffiffiffi
gh
p
Dx

CdDx
h

f Dx
u1

Comments

1 0.01 0 0 0 Subcritical, steady
2 100 0 0 0 Supercritical, steady
3 0.01 100 0 0 Subcritical, convective Dt
4 0.01 10 0 0 Subcritical, intermediate Dt
5 0.01 0 10 0 Subcritical, friction
6 100 0 10 0 Supercritical, friction
7 0.01 0 0 10 Subcritical, Coriolis
8 100 0 0 10 Supercritical, Coriolis



Table
Conve

p=popt

Case 1
Case 2
Case 3
Case 4
Case 5
Case 6
Case 7
Case 8

A rang
violate
magnit
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u
u1
¼ 1þ Axð1� xÞðsinð2pxÞ þ sinð16pxÞÞðsinð2pyÞ þ sinð16pyÞÞ

v
u1
¼ Axð1� xÞðsinð2pxÞ þ sinð16pxÞÞðsinð2pyÞ þ sinð16pyÞÞ

h ¼ 1:0þ Ahxð1� xÞðsinð2pxÞ þ sinð16pxÞÞðsinð2pyÞ þ sinð16pyÞÞ
ð45Þ
where A is the amplitude of the velocity perturbation and Ah is the amplitude of the depth perturbation. For all
of the calculations, A was set to 0.01. Ah was set to 0.0001 in the subcritical case and 0.01 in the supercritical
case. It was necessary for Ah to be smaller in the subcritical case because small changes in free-surface height
result in large changes in flow velocity when the flow is subcritical.

The tests with multigrid are performed using a W-cycle with two five-stage Runge–Kutta relaxations per-
formed after each restriction and prolongation phase of the multigrid. With this configuration, the scheme
becomes essentially a two-level iteration; the equations on the coarse grid are solved precisely for each fine
grid iteration. This set-up was chosen so that we could more accurately assess the performance of the relax-
ation scheme in damping the high wavenumbers. It would be more computationally efficient to use a V-cycle
with less relaxations on each grid level, but in previous work [23] we have found that if the coarse grid resid-
uals are not significantly reduced, a boundary-condition-driven instability can develop. Table 2 shows the con-
vergence factors for each case studied. The convergence factor is the ratio of the magnitude of the residuals
before and after one multigrid cycle. The W-cycle is terminated on first return to the finest mesh, thus there
are four relaxations on the fine mesh per cycle (two before the restriction to the first coarser mesh, and two
after the prolongation back to the fine mesh). We determine a mean convergence factor by iterating until
machine convergence is reached then fitting an exponential curve to a plot of the residual as a function of iter-
ation number. In fitting the curve, we ignore the initial region of the curve where faster decaying modes are
eliminated and only fit the data after a nearly constant convergence factor is reached. This convergence factor
is then due to the slowest decaying mode of the iteration. The number in parentheses is the number of itera-
tions required to reduce the residual error one order of magnitude based on the mean convergence factor. A
‘‘u” indicates that the iteration failed to converge and a ‘‘–” indicates that the chosen value of p violated the
limit established in Eq. (15).

There are several significant trends in this table. Cases 1 (steady, subcritical), 3 (convective CFL), and 4
(intermediate CFL), all converge faster with 1=4 popt. We have rerun these cases with p=popt ¼ 1=8 and found
that the optimal value is at p=popt ¼ 1=4. There are several possible explanations for why the optimum was not
exactly predicted by the analysis. First, there are implementation differences because the tests are run on an
unstructured mesh with different definitions of Dx and Dy than in the analysis. Second, the analysis was based
on a first-order upwind scheme rather than the SUPG FEM stabilization. Lastly, the analysis was based on
optimal damping of only the highest wavenumber on the mesh. Optimal multigrid convergence requires that
the entire spectrum of nondimensional wavenumbers from p=2 to p be damped. In spite of this, the analysis
did an excellent job predicting the scaling of p for optimum convergence and a reasonably accurate job of pre-
dicting the exact value necessary. For all of the remaining cases except case 8, the analysis predicted the value
2
rgence factors for various dynamical limits in free stream flow

1/4 1/2 1 2 4

0.91 (25.8) 0.93 (30.2) 0.94 (39.2) 0.96 (54.5) 0.95 (47.4)
u u 0.75 (8.1) – –
0.35 (2.2) 0.36 (2.3) 0.42 (2.6) 0.46 (3.0) 0.52 (3.5)
0.12 (1.1) 0.16 (1.3) 0.24 (1.6) 0.34 (2.2) 0.40 (2.6)
0.65 (5.3) 0.47 (3.0) 0.35 (2.2) 0.37 (2.3) 0.42 (2.6)
0.97 (88.4) 0.97 (73.1) 0.94 (40.5) – –
u u 0.94 (35.4) 0.95 (43.1) 0.97 (74.7)
u u u – –

e of p=popt is tested in a w-cycle multigrid iteration. A ‘‘u” indicates divergence and a ‘‘–” indicates that the chosen value of p

s the limit established in Eq. (15). The numbers in parentheses are the number of iterations required to reduce the error one order of
ude.
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of popt perfectly; other values of p either give larger convergence factors, diverged, or violated the maximum
constraint.

As expected from the analysis, the supercritical friction-dominated case (6) and supercritical Coriolis-dom-
inated case (8) do not perform well. For the friction-dominated case, the convergence factor is 0.94 and in the
Coriolis-dominated case the iteration does not converge at all. As mentioned previously, these cases are not
typically physically significant, but if there was a problem that encountered these conditions, one would either
have to decrease the physical time step until it stabilized the iteration or use another iterative approach. The
Coriolis-dominated case is especially difficult because the Coriolis terms cause oscillation at the highest wave-
numbers rather than damping.

Several of the iterations, although convergent, required a large number of iterations to reduce the error an
order of magnitude. These include cases 1 and 7 and to a lesser extent case 2. Cases 1 and 2 are the subcritical
and supercritical steady cases. In the analysis of these cases, the conditions that were high wavenumber in y
and 0 wavenumber in x resulted in a zero eigenvalue (middle set of eigenvalues in Eqs. (22) and (24)). These are
high-wavenumber error modes that lack any damping because the local discretization allows slip between
adjacent fluid layers. The only way the iteration can eliminate slip is by propagating the specified uniform inlet
velocity across the entire domain. Because the error mode is high wavenumber in the y-direction, multigrid
does not help this process, and the convergence rate should be dependent on the number of grid cells in
the mesh. To verify this, we repeated cases 1 and 2 on a 64 � 64 grid. The convergence factor for case 1 on
the finer grid is 0.95 (49.1) versus 0.94 (39.2) on the 32 � 32 grid. Thus, for this case the convergence rate
depends on the mesh resolution. In case 2, the supercritical case, the convergence factor is 0.75 (7.9) versus
0.75 (8.1). Thus, in this case the convergence is grid independent. This is rather unexpected because the zero
eigenvalue should affect the convergence rate. For case 7 (Coriolis-dominated, subcritical), there is no zero
eigenvalue and the results should be grid independent. For that case, the convergence factor on the 64 � 64
grid is 0.93 (30.9) and 0.94 (35.4) on the 32 � 32 grid, indicating grid-independence. The reason that conver-
gence is slow is again because the Coriolis terms cause oscillation rather than damping.

Based on the results for these tests, we introduce a modified version of the preconditioner, defined as
p ¼ ð1þ a2ÞjjV jj2 þ D2
maxðDt�2=4þ f 2Þ

ð1þ ra2ÞjjV jj2 þ D2
maxðDt�2=4þ rf 2Þ þ gh

ð46Þ
This modified formulation for the preconditioner is employed in the remaining tests.

7.2. Equatorial Rossby soliton

To examine the performance for a more realistic application, we consider a problem from geophysical fluid
dynamics with a known analytical solution. The test problem considers the propagation of a Rossby soliton
on an equatorial b-plane [24]. The soliton propagates westward at a fixed celerity and shape. While this is a
common test case for consistency and accuracy of shallow water equation solvers, we will employ this case to
test the effects of the preconditioner on iterative convergence in a flow with rotation. The b-plane approxima-
tion used for the Coriolis parameter is f ¼ fo þ by with fo ¼ 0 as the problem is symmetric about the equator.
The spatial and temporal coordinates of the problem are non-dimensionalized using combinations of the
variables b and

ffiffiffiffiffi
gb
p

where b is the constant bathymetric depth. b can thus be set to one in the preceding
expression. The computational domain is a rectangle with limits �24 6 x 6 24 and �8:0 6 y 6 8:0 (see
Fig. 1). Bottom friction is neglected ðCd ¼ 0Þ.

Characteristic boundary conditions are used on the meridional sides of the domain, and for the zonal
boundaries, a slip condition is employed. The initial conditions for the water depth and velocity nondimen-
sionalized using b and

ffiffiffiffiffi
gb
p

are given by
h ¼ 1þ /ðxÞ 3þ6y2

4

� �
e�y2=2

u ¼ /ðxÞ �9þ6y2

4

� �
e�y2=2

v ¼ o/
ox ð2yÞe�y2=2

ð47Þ
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Fig. 1. Domain and initial surface elevation for Rossby soliton test case (white line: equator).
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with
/ðxÞ ¼ 0:771B2sech2Bx
o/
ox ¼ �2B tanhðBxÞ/
B ¼ 0:395

ð48Þ
The equatorial Rossby soliton test case is run using three time steps ðDt ¼ 0:5; 1:0; 2:0Þ on a sequence of
meshes with resolution ðDx ¼ 1:0; 0:5; 0:25; 0:125Þ. Because of the spatially varying flow velocity, most of
the non-dimensional parameters can only be defined locally. The local Froude number is independent of grid
resolution and time step but varies with the flow velocity. The minimum Fr is zero because the flow velocity
approaches zero near the zonal boundaries. The maximum value is 0.25. The CFL number for the coarsest
mesh has maximum value of 0.125 and for the finest mesh the maximum was 4. The CFL number based
on the wave celerity ranges from 0.5 (small Dt coarse mesh) to 16 (large Dt fine mesh). The ratio of the grid
scale to the local Rossby deformation radius, f Dxffiffiffiffi

gb
p varies linearly with y because of the b-plane assumption. For

the coarse grid the maximum value was 8 and on the fine grid the maximum was 1. Overall, on the coarse
mesh, the maximum explicit time step allowable is roughly 1/8 due to the Coriolis terms. On the fine mesh,
the maximum allowable time step due to Coriolis terms and the wave celerity is both 1/8. If these effects
are additive, then the maximum explicit time step is probably around 1/16.

For each mesh and time step, five preconditioning multiplicative factors are examined:
p=popt ¼ 0:25; 0:5; 1:0; 2:0; 4. For specification of popt, the modified preconditioner (Eq. (46)) is utilized. In
the iterative scheme, local flow values are used to calculate a local p and iterative time step at each grid point.
All cases with p=popt ¼ 4 diverged. Results for cases with the remaining factors are shown in Table 3. In gen-
eral, conditions with more dominant Coriolis effects (coarse grid with large time steps) converged slower. At
the finest grid resolution using Dt ¼ 2:0, it takes 7.5 cycles to reduce the error an order of magnitude. This
corresponds to 30 relaxations because there are 4 fine grid relaxations per cycle. Because the allowable explicit
time step for these conditions is roughly 1/16, an explicit scheme would take 32 time steps to simulate the same
length of time. Thus, it seems that the two methods are comparable, although to make a fair comparison we
should determine how much the iterative error must be reduced each time step to maintain a specified target
accuracy. Factoring in the overhead of multigrid, the explicit scheme is probably more efficient. This is not
unexpected because this problem does not have characteristics that make it stiff (Fr is O(1), uniform mesh
resolution).

Looking at the variation of the damping factors with p=popt it seems that most cases converged best
in the 1/2 to 2 range, which indicates that the scaling of p is primarily correct even for this case in
which the conditions vary widely across the mesh. Coriolis-dominated conditions ðDx ¼ 1:0;Dt ¼ 2:0Þ
again cause difficulties. It seems that one must consider a non-diagonal preconditioner to eliminate this
problem.



Table 3
Convergence factors for the Rossby equatorial soliton test case

Dx Dt p=popt

1/4 1/2 1 2

1.0 2.0 0.97 (104.1) 0.96 (62.71) u u
0.5 2.0 0.80 (130.0) 0.95 (46.7) 0.90 (21.5) u
0.25 2.0 0.95 (48.7) 0.90 (22.4) 0.877 (17.5) 0.81 (11.1)
0.125 2.0 0.95 (43.4) 0.87 (17.1) 0.74 (7.5) 0.79 (9.6)
1.0 1.0 0.58 (4.2) 0.83 (12.3) u u
0.5 1.0 0.40 (2.5) 0.50 (3.3) 0.74 (7.6) u
0.25 1.0 0.69 (6.2) 0.55 (3.9) 0.64 (5.1) 0.77 (9.0)
0.125 1.0 0.84 (13.7) 0.72 (6.9) 0.60 (4.53) 0.66 (5.6)
1.0 0.5 0.53 (3.6) 0.48 (3.1) u u
0.5 0.5 0.51 (3.5) 0.31 (2.0) 0.61 (4.8) u
0.25 0.5 0.60 (4.4) 0.40 (2.5) 0.49 (3.2) 0.69 (6.2)
0.125 0.5 0.76 (8.5) 0.58 (4.5) 0.49 (3.3) 0.55 (3.8)

A range of p=popt is tested in a preconditioned W-cycle multigrid iteration. A ‘‘u” indicates divergence. The numbers in parentheses are the
number of iterations required to reduce the error one order of magnitude.
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7.3. Tide propagation in a semi-enclosed channel

In this test, we examine the efficacy of the preconditioner for a tidally-driven flow at length and depth scales
relevant to coastal oceanography. The test case is a long wave run-up on a linearly sloping bottom. Bottom
friction and Coriolis terms are neglected ðCd ¼ 0; f ¼ 0Þ. The domain is a semi-enclosed channel of length
(L = 580 km) (Fig. 2). The problem is one-dimensional and thus the width is not a critical parameter. The
bathymetry ranges from Ho ¼ 20 m at the open boundary to 0 m at the closed end. As the code does not cur-
rently support flooding/drying dynamics, the domain is truncated at (L = 575 km) to maintain positive depth.
The flow is forced at the open boundary ðx ¼ 0Þ using a prescribed free surface elevation of amplitude 1 cm
and period T p ¼ 12:42h, corresponding to the dominant tidal component for most coastal regions. The prob-
lem has an analytical solution, based on linearized equations, which could in principle be used to evaluate the
accuracy of the scheme. For our interests, however, this test case represents a tidal-flow problem with typical
depth, length, and time scales for coastal ocean applications and thus is a good test of the preconditioner for
time-dependent, low Fr flows.

The tidally-forced semi-enclosed channel test case was run using a range of time steps per tidal period
(5, 10, 20, 40), and mesh resolution ðDx ¼ 1:25; 2:5; 5:0; 10 kmÞ. For this problem, the mean Froude number
over the wave period at the midpoint of the domain ðx ¼ 290 kmÞ is approximately Fr ¼ 0:01, thus the dispar-
ity between gravity wave speed and local convective speed is approximately two orders of magnitude. The
z

x

L

Ho

y

Fig. 2. Domain and coordinate system for semi-enclosed channel.



Table 4
Convergence factors for the tidally-forced channel

Dx ðkmÞ T p

Dt 1/4 1/2 1 2 4

p=popt

10 5 0.57 (4.0) 0.37 (2.4) 0.30 (1.9) 1.4 (2.3) 0.45 (2.9)
1.25 5 0.62 (4.8) 0.70 (6.5) 0.76 (8.5) 0.80 (9.8) 0.80 (9.9)
10 40 0.46 (3.0) 0.39 (2.4) 0.42 (2.7) 0.36 (2.3) 0.35 (2.2)
1.25 40 0.52 (3.6) 0.31 (2.0) 0.32 (2.1) 0.33 (2.0) 0.44 (2.9)

A range of p=popt is tested in a preconditioned w-cycle multigrid iteration. The numbers in parentheses are the number of iterations
required to reduce the error one order of magnitude.
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wave-speed-based CFL

�
Dt
ffiffiffiffi
gh
p
Dx

�
ranges from 1 to 100 based on mesh resolution and time step. The convective

CFL ranges from 0.01 to 1.

Table 4 shows the convergence factors for the smallest and largest time step (displayed in time steps per
forcing period,

T p

Dt) and coarsest and finest mesh resolutions for a range of preconditioning multiplicative fac-
tors p=popt. The results shown are averages of the convergence factor for time steps at quarter period intervals.
Every case run converged. The fine mesh resolution, large time step case (results row 2), corresponds to a near
unity convective CFL, similar to conditions from case 3 in the idealized numerical tests (Table 1). The low
mesh resolution, small time step (results row 3) is similar to the conditions from case 4 in the idealized tests,
with an intermediate time step. Convergence factors from the tidally-forced channel show that with the excep-
tion of the high resolution, large time step case, all cases converged rapidly. For the convective time step case,
the smallest value of preconditioner multiplier was found to be optimal. Further reduction of the precondi-
tioner to p ¼ 1

8
popt led to divergence. For this test case as well as both relevant idealized tests (case 3 and

4), an increase in wave speed CFL led to a decrease in convergence rate. As mentioned previously, this is
because of the difficulty in eliminating slip modes. Our personal experience is that these modes become less
problematic when the flow is not perfectly aligned with the mesh or the mesh is unstructured.

Assuming an order of magnitude convergence per time step is sufficient, the implicit formulation would
most likely be more efficient than an explicit approach. For the fine grid with the large time step, 170 fine grid
relaxations would be needed per period (8.5 cycles per time step, 4 fine grid relaxations per cycle, 5 time steps
per period). An explicit scheme would require 5000 time steps per period based on the wave speed limited
explicit time step. Again this comparison is rough but it does indicate that this approach can have significant
benefits depending on the problem.

8. Conclusions

We have investigated preconditioning for the shallow water equations with inclusion of Coriolis terms and
bottom friction. A formulation of the preconditioner parameter p was determined for use in a multigrid iter-
ation and tested for dynamical limits relevant to the system. Coupling the preconditioner to a multigrid cycle,
we demonstrated good convergence rates for most conditions. For all conditions, our choice of preconditioner
parameter, p, was within a factor of 2 of optimum and most of the test cases converged rapidly. However, with
this simple explicit preconditioner it was not possible to achieve good convergence for subcritical steady, Cori-
olis-dominated, and supercritical friction-dominated cases. Of these, the most important is the Coriolis-dom-
inated case, and the preconditioner was not very robust for these conditions. Possible solutions may be to
include a point-implicit treatment of the Coriolis terms in the iteration, but this was not examined here.

Two test cases were employed to examine the performance of the preconditioner for more realistic flows
using a range of time steps and mesh resolutions. The first, a Rossby equatorial soliton tested the precondi-
tioner for planetary-scale problems with strong rotational effects. For this test case, the multigrid iteration
diverged at small grid scale Rossby number with p ¼ popt. This is again because of the difficulties associated
with Coriolis effects. All cases were found to converge using a more conservative p ¼ 1

2
popt. Rough estimates

indicate that the proposed fully implicit approach would be moderately slower than a standard explicit scheme
for this problem. This is because the problem does not have much inherent stiffness.
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The second test case, a tidally-forced semi-enclosed channel examined the preconditioner’s performance for
time-dependent low-Froude number flows at scales relevant to coastal oceanography. For this case, the pre-
conditioner proved to be quite robust and good convergence was obtained for all time steps and mesh reso-
lutions. A rough comparison to the work required for an explicit simulation indicated that more than an order
of magnitude increase in efficiency is possible using the implicit approach.
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